SIMULACRO INGENIERÍAS UNSA INGRESO UNIVERSIDAD 2025 RESUELTO RESPUESTAS PDF

CLAVES-RESPUESTAS 1)C    2)A    3)B    4)A    5)B    6)D    7)D    8)C    9)B    10)C    11)A     12)A    13)D    14)A    15)C     16)C    17)A    18)D    19)A    20)E    21)C    22)E    23)B    24)A    25)E    26)E     27)E    28)C    29)B    30)C    31)A    32)A    33)D   34)D    35)A  36)B    37)B     38)C    39)A    40)A    41)C     42)B    43)E    44)A    45)B    46)E    47)A    48)C    49)E    50)B    51)A    52)E     53)D    54)C    55)C    56)B    57)A    58)C    59)D   60)C
PREGUNTA 1 :
TEXTO 
El asteroide 2015 BZ509, descubierto en 2014, es el primer cuerpo del sistema solar cuyo origen extrasolar ha quedado completamente demostrado, según una nueva investigación publicada en MNRAS. Desde hace tiempo, los astrónomos se preguntan si algunos de los cuerpos celestes de nuestro sistema solar podrían proceder de otros confines del universo. Algunos han pensado que los cometas podrían haberse formado en otros sistemas estelares y que hoy forman parte de nuestro sistema solar porque han sido atraídos por nuestro Sol. Pero nada de eso ha podido probarse hasta ahora, salvo en un caso: el asteroide 1l/’Oumuamua, descubierto en 2017, que se comprobó que procedía de otro sistema solar; no se queda con nosotros, sino que, como un turista de paso, continúa sus trayectoria hacia otros mundos. El asteroide 2015 BZ509, sin embargo, ya forma parte de nuestro sistema solar como inmigrante “nacionalizado”. Con alrededor de 3 kilómetros de diámetro, se ha instalado en la órbita de Júpiter, el quinto planeta de nuestro sistema solar. Gira alrededor del Sol a la misma velocidad que Júpiter, pero en sentido inverso (órbita retrógada), una propiedad de los asteroides que se encuentran habitualmente en los confines del sistema solar. Solo algunos de estos asteroides, como los centauros, se acercan ocasionalmente hacia los planetas gigantes para quedarse durante millones de años. 
¿Cuál de los enunciados es incompatible con el contenido del texto? 
A) Todos los asteroides, como los centauros y el 1l/’Oumuamua, se acercan hacia los planetas gigantes. 
B) Los cometas, según la opinión de algunos, podrían haberse formado en otros sistemas estelares y hoy forman parte de nuestro sistema solar. 
C) El asteroide 2015 BZ509 es el primer cuerpo del sistema solar y su origen extrasolar ha quedado demostrado. 
D) Los astrónomos se preguntan si algunos de los cuerpos celestes de nuestro sistema solar proceden de otros confines del universo. 
E) El asteroide 1l/’Oumuamua fue descubierto en 2017 y se comprobó que procedía de otro sistema solar. 
RESOLUCIÓN :
COMPRENSIÓN DE LECTURA 
Según el texto, es incompatible decir que todos los asteroides, como los centauros y el 1I/’Oumuamua, se acercan hacia los planetas gigantes. En el texto, se señala que solo algunos de los asteroides, como los centauros, se acercan ocasionalmente hacia los planetas gigantes. Esto quiere decir que no todos los asteroides se acercan hacia los planetas gigantes para quedarse durante millones de años en el Sistema Solar. 
Rpta. : "A"
PREGUNTA 1 :
En un salón de clase hay 12 mujeres más que varones. Si el número de varones es al de mujeres como dos es a cinco. Calcula cuántos varones y cuántas mujeres hay. 
a) 8 y 20 
b) 8 y 16 
c) 12 y 8 
d) 10 y 21 
e) 16 y 42  
Rpta. : "A"
PREGUNTA 2 : 
El promedio geométrico de dos números es 12 y su promedio armónico es 4 Halla su promedio aritmético. 
A) 38 
B) 30 
C) 32 
D) 35 
E) 36 
Rpta. : "E"
PREGUNTA 3 :
Un tanque posee dos caños de llenado. El primero, por sí solo, lo llenaría en 8 horas; el segundo, por sí solo, lo llenaría en 4 horas. ¿Qué fracción de la capacidad del depósito se llenaría en una hora con los dos caños abiertos a la vez? 
A) 3/8 
B) 5/8 
C) 2/7 
D) 8/11 
E) 3/13 
Rpta. : "A"
PREGUNTA 4 :
Reparte 280 en forma directamente proporcional 1/5; 2/3; 3/10. Da como respuesta la parte mayor. 
A) 160 
B) 100 
C) 180 
D) 140 
E) N.A. 
Rpta. : "A"
PREGUNTA 5 :
Una guarnición de 1000 hombres tenía víveres para un año. Cinco meses después recibieron 250 hombres de refuerzo y 2 meses después murieron 125 hombres en combate. ¿Para cuantos meses alcanzaron los víveres? 
A) 9 
B) 10 
C) 11 
D) 12 
E) 13 
Rpta. : "C"
PREGUNTA 6 :
Se está construyendo una obra que se debe terminar dentro de 18 días para lo cual se emplean 24 obreros que tienen una jornada de trabajo de 8 h/d. Al cabo de 9 días se enferman 3 obreros faltando al trabajo 3 días. ¿Cuántas horas más por día deben trabajar éstos 3 obreros durante los días restantes para que la obra se entregue en el plazo fijado? 
A) 3 
B) 2 
C) 4 
D) 1 
E) 5 
Rpta. : "C"
PREGUNTA 7 :
El profesor del curso Álgebra Lineal dio a sus alumnos una separata con doce problemas para que practiquen y lleguen bien preparados al examen final de la asignatura. Si el examen final consta de solo 5 problemas y los 5 son de la separata, ¿cuál es la probabilidad de que en el examen estén los problemas 1 y 2 de la separata, en cualquier orden? 
A) 5/33 
B) 10/33 
C) 20/33 
D) 29/30 
E) 23/30 
Rpta. : "A"
PREGUNTA 8 :
Jacinta compra pimienta, comino y orégano, cuatro envases llenos de cada uno de esos condimentos. Ella, en su cocina, solo cuenta con un condimentero donde entran exactamente cuatro de esos envases en fila. ¿Cuál es la probabilidad de que en dicho condimentero estén los tres condimentos mencionados, pero que los de un mismo tipo no se ubiquen juntos? 
A) 1/9 
B) 2/9 
C) 1/3 
D) 9/32 
E) 5/16 
Rpta. : "B"
PREGUNTA 9 : 
Debido a un problema de salud, María debe tomar vitaminas cada 8 horas. Para ello, tiene tres frascos que contienen cada uno 120 cápsulas de vitaminas. Su médico le indicó tomar 4 cápsulas del primer frasco; una vez agotado dicho frasco, continuar tomando 3 cápsulas del segundo hasta agotarlo y, de manera similar, 2 cápsulas del tercer frasco. Si María tomó todas las cápsulas indicadas por el médico, ¿cuántas horas duró su tratamiento? 
A) 1016 
B) 1024 
C) 1032 
D) 1008 
E) 1040 
Rpta. : "C"
PREGUNTA 10 :
En una reunión familiar, celebrando el cumpleaños de Víctor, se pudo contar entre los presentes: 3 padres, una madre, 5 hermanos, una hermana, un abuelo, 4 hijos, una hija, un tío abuelo, un suegro, una esposa, 2 nietos, una nieta, 3 tíos y una tía. Si cada uno de los varones consumió 3 nuggets de pollo, y cada una de las mujeres consumió 2 nuggets de pollo, ¿cuántos nuggets, como mínimo, se consumieron en dicha reunión? 
A) 25 
B) 24 
C) 22 
D) 27 
E) 23 
Rpta. : "C"
PREGUNTA 11 :
Sobre una cuadrícula de 2×5, Yaritza ha colocado 10 fichas circulares, como se muestra en la figura. ¿Cuántas fichas debe cambiar de posición, como mínimo, de tal manera que la suma de los números de las fichas ubicadas en las casillas sombreadas sea igual a la suma de los números de las fichas ubicadas en las casillas sin sombrear? 
A) 2 
B) 3 
C) 4 
D) 5 
E) 6
RESOLUCIÓN :
Rpta. : "A"

Ejercicios resueltos de examen de admisión a la Universidad