SUMA DE NÚMEROS ENTEROS EJERCICIOS RESUELTOS PDF

Imaginemos que nos vamos a desplazar en la recta numérica, en la cual el número cero será nuestro punto de referencia de donde vamos a iniciar nuestro camino. 
Luego, podremos interpretar la adición de números enteros, asignando números positivos a la distancia que nos vamos a desplazar hacia la derecha (avanzar) y números negativos si nos desplazamos hacia la izquierda (retroceder). 

REGLA DE SIGNOS EN LA ADICIÓN DE NÚMEROS ENTEROS 
Al sumar dos números enteros se presentan 2 casos: 

1ER CASO
Al sumar dos números del mismo signo, se escribe el signo común a ambos y luego se suman sus valores absolutos y el signo del resultado es el mismo. 

2DO CASO
Al sumar dos números de distinto signo se escribe el signo del número de mayor valor absoluto y luego se diferencian sus valores absolutos. 

PROPIEDADES 
PROPIEDAD DE CLAUSURA
“La suma de dos números enteros da como resultado otro número entero” 

PROPIEDAD COMMUTATIVA
“El orden de los sumandos no altera la suma” 
EJEMPLO
(+8) + (–5) = (–5) + (+8) +3 = +3 

PROPIEDAD ASOCIATIVA
“La forma como agrupamos tres o más sumandos no altera la suma” 

PROPIEDAD DEL ELEMENTO NEUTRO 
“La suma de un número entero y el cero da como resultados el mismo número entero” 
EJEMPLO
(–13) + 0 = –13 

PROPIEDAD DEL ELEMENTO OPUESTO O SIMÉTRICO
“Si sumamos a un número entero otro número entero opuesto, siempre obtenemos cero” 
EJEMPLO
(+17) + (–17) = 0 

PROPIEDAD DE MONOTONÍA
“Dada una igualdad, podemos sumar a ambos miembros, un mismo número entero, resultando entonces otra igualdad” 
Así: 
(+5) + (–8) = (–3) 
(+5) + (–8) + (–10) = (–3) + (–10) –13 
= –13 

PROPIEDAD CANCELATIVA
«Dada una igualdad, si hay un mismo sumando entero en ambos miembros podemos cancelarlo obteniendo entonces otra igualdad» 

Las propiedades de la adición de números enteros permiten efectuar la adición de tres o más números enteros de dos maneras equivalentes. 

• Se suman los números de dos en dos, de forma consecutiva. 

• Se suman por separado los números positivos y los negativos, y luego se resuelven las operaciones resultantes. 

ADICIÓN DE VARIOS SUMANDOS 
Se aplica tanto la propiedad conmutativa como la asociativa. 
primera forma : 
Se puede sumar agrupando de dos en dos los sumandos. 
segunda forma: 
Se puede sumar agrupando los sumandos positivos y los sumandos negativos. 

EJEMPLO
Efectúa: 
(+2) + (+7) + (– 3) + (– 5) + (+8)

Ejercicios resueltos de examen de admisión a la Universidad