TEOREMA DEL CERO O DE BOLZANO EJERCICIOS RESUELTOS

Teorema del cero y su demostración Teorema de Bolzano Propiedad de Darboux Sea la función f continua en el intervalo (a; b) tal que !ta)!tb) < O, entonces:: J Xo E (a; b) tal que !txo)=O Gráficamente: El hecho que f (a)xf (b) > O, no quiere decir que no existe una ra íz en (o; b) porque se puede dar: Tenemos f (aY (b) > O Y vemos dos raíces: x l; X2 en (o; b). Ejemplo Halle una raíz de la función !tx)=2x5 +x- l , en forma aproximada. Resolución Se observa que: Por el teorema del cero se tiene: Como !tO) ·!tl) < O Graficando se tiene: Aproximando la raíz Xo establecemos una semejanza entre los triángulos ~DOA - ~BAC. 1 2 Luego: --- Ejemplo 2 :
Estimar una raíz de la función:
f(x) = x7 + x – 1 , en forma aproximada .
Resolución :
Se deduce que : f(0) = –1 ;  f(1) = 1
Luego por el teorema del cero ; como :
 f(0). f(1)<0 ,  entonces existe una raíz en
Related Posts Plugin for WordPress, Blogger...

SI DESEAS OTRO TEMA BUSCAR AQUÍ

Matemáticas Ejercicios Resueltos en pdf

Mostrar más

LIBRO PREUNIVERSITARIOS RUBIÑOS