FUNCION LOGARITMO EJERCICIOS RESUELTOS PDF

  • CLICK AQUI PARA ver TEORÍA
  • CLICK AQUI PARA ver EJERCICIOS RESUELTOS 
  • CLICK AQUI PARA ver  GUIA DE CLASE PRACTICA CON RESPUESTAS
  • CLICK AQUI PARA ver FUNCION EXPONENCIAL EN VIDEOS
  • CLICK AQUI PARA ver FUNCION LOGARITMO EN VIDEOS
  • Gráfica de una función logarítmica ,
    Una función logarítmica es aquella de la forma y= log a x, es la inversa de la función exponencial y = ax. Sus gráficos son simétricos con respecto a la recta y = x. El número irracional e es la base de los logaritmos naturales, y aparece en muchas fórmulas que describen fenómenos de diversa naturaleza. CLICK AQUI PARA VER PDF  
    OBJETIVOS : * Identificarás y explicarás la función logarítmica. * Construirás la tabla de valores de una función logarítmica, con orden y limpieza. * Identificarás y explicarás, con seguridad, el dominio y rango de la función logarítmica. * Construirás, con orden y aseo, la gráfica de la función logarítmica y la analizarás con seguridad. * Determinarás e interpretarás las propiedades de las funciones logarítmicas a través de su gráfica, con interés y seguridad. * Resolverás ejercicios aplicando las propiedades de las funciones logarítmicas. * Resolverás, con seguridad y confianza, problemas de aplicación de la función logarítmica, en cooperación con otros.
    El número irracional e Como leíste en la sección Ventana de la lección anterior, el número irracional e debe su creación al matemático Euler. Este número aparece en el estudio de muchos fenómenos físicos, químicos, demográficos, biológicos, etc… Acá te presentamos una de las formas en que puedes encontrarlo.
    LA GLOTOCRONOLOGÍA La glotocronología es un método para calcular la antigüedad de una lengua. Se basa en el hecho de que en teoría, en un tiempo largo ocurren cambios lingüísticos con rapidez constante. Así, si una lengua tiene originalmente N palabras básicas, en t milenios el número N(t) de palabras que permanecen en la lengua está dado por N(t) = N (0.805)t. Por ejemplo, en 500 años (0.50 de milenio) permanecen (0.805)0.5 ≈ 0.897 = 89.7% del número inicial de palabras. ¿Qué porcentaje de una lengua original se habrá perdido en 1,000 años?
    Related Posts Plugin for WordPress, Blogger...

    SI DESEAS OTRO TEMA BUSCAR AQUÍ

    Matemáticas Ejercicios Resueltos en pdf

    Mostrar más

    LIBRO PREUNIVERSITARIOS RUBIÑOS