ROZAMIENTO ESTÁTICO Y CINÉTICO -COEFICIENTE DE FRICCIÓN PROBLEMAS RESUELTOS EN PDF Y VIDEOS
1. El bloque de 30 kg está a punto de deslizar cuando el resorte de K = 50 N/cm está comprimido 3 cm. Entonces el coeficiente de rozamiento estático es: (g=10 m/s²)
a) 0,5 b) 0,75 c) 0,85 d) 0,9 e) 0,95
2. En la figura mostrada, calcular el máximo valor de “α” para que el bloque no resbale, si μS = 3 .
a) 37° b) 30° c) 53° d) 60° e) 90°
3. Se deja deslizar una moneda, observándose que llega al llano en 2 s. Hallar el coeficiente de fricción cinética entre la moneda y el plano inclinado. (g = 10 m/s²)
a) 0,5 b) 0,25 c) 0,125 d) 0,3 e) 0,4
4. Carlitos viaja en bicicleta y frena al
recordar que olvidó su libro de Física,
resbalando y desacelerando a razón
de 4 m/s². Hallar el coeficiente de
rozamiento cinético entre las llantas y
la pista. Se desplaza horizontalmente.
(g = 10 m/s²)
a) 0,2 b) 0,3 c) 0,4
d) 0,5 e) 0,1
5. Calcular la aceleración de los bloques
si tiene el mismo peso, además
μK = 0,5. (g = 10 m/s²)
a) 1 m/s² b) 4 m/s² c) 6 m/s²
d) 8 m/s² e) 4,5 m/s²
6. ¿Qué valores puede tomar el peso
“P” para que el sistema permanezca
en reposo, si el bloque “A” pesa 200N
y las poleas lisas 20N?
I. 58 N
II. 82 N
III. 90 N
a) Sólo I b) Sólo II c) Sólo III
d) I y III e) I y II
7. Mediante una cuerda inextensible de
peso despreciable, un hombre jala
horizontalmente un bloque tal que
éste resbala con una aceleración
constante de 5 m/s². ¿Con qué
aceleración resbalará el hombre, cuyo
peso es tres veces el del bloque?.
Si se considera un coeficiente de
rozamiento cinético de 0,1 entre
todas las superficies en contacto.
(g = 10 m/s²)
a) 0,33 m/s² b) 0,22 m/s² c) 1 m/s²
d) 0,67 m/s² e) 2 m/s²
8. Calcular el mínimo valor de F para
que el cuerpo A = 1 kg, que se halla
apoyado en B = 3 kg no resbale
respecto de la superficie vertical. El
coeficiente de rozamiento estático y
cinético entre el bloque A y el carro
B es 0,4 y 0,2 respectivamente.
(g = 10 m/s²)
a) 125 N b) 100 N c) 75 N
d) 40 N e) 200 N
9. El coche mostrado se mueve con
aceleración constante “a”, el bloque
de masa “m” está apoyado sobre la
pared del coche y su movimiento es
inminente sobre ella. Determinar el
coeficiente de fricción “μS”.
a) Sen θ b) θ c) Cos θ
d) Ctg θ e) Tg θ
10. La barra que se muestra es
homogénea pesa 150 N y está sujeta
a un resorte cuya constante de rigidez
(K) es 10 N/cm. Calcular el coeficiente
de fricción de la pared vertical para el
equilibrio.
a) 0,25 b) 0,5 c) 0,75
d) 1 e) 1,5