QUÉ ENTENDEMOS POR APRENDER MATEMÁTICAS PDF

La Matemática forma parte del pensamiento humano y se va estructurando desde los primeros años de vida en forma gradual y sistemática, a través de las interacciones cotidianas. Los niños1 observan y exploran su entorno inmediato y los objetos que lo configuran, estableciendo relaciones entre ellos cuando realizan actividades concretas de diferentes maneras: utilizando materiales, participando en juegos y en actividades productivas familiares, elaborando esquemas, gráficos, dibujos, entre otros. Estas interacciones les permiten plantear hipótesis, encontrar regularidades, hacer transferencias, establecer generalizaciones, representar y evocar aspectos diferentes de la realidad vivida, interiorizarlos en operaciones mentales y comunicarlos de forma verbal o simbólicamente. De esta manera, el estudiante va desarrollando su pensamiento matemático y su razonamiento lógico, pasando progresivamente de las operaciones concretas a mayores niveles de abstracción; esto permite al estudiante estar en capacidad de responder a los desafíos que se le presentan, planteando y resolviendo con creatividad y con actitud crítica los problemas de su realidad. Una breve lectura de la última Evaluación Censal de Estudiantes (ECE) 2015 para niños de 2° grado de Primaria nos muestra que solo el 13,2% de estudiantes logran el nivel suficiente en los aprendizajes del área; 35,8% se encuentra en el nivel 1 y el 51% se encuentra por debajo del nivel 1. Esto significa que de cada 10 niños solo 1 logra los niveles suficientes en el desarrollo de las capacidades matemáticas, relacionadas con la comprensión del número, con las operaciones y con la resolución de problemas. Las prácticas docentes repetitivas, centradas en algoritmos de operaciones con números, las estrategias metodológicas que inciden en la reproducción de procedimientos previamente aprendidos y la falta de una ruta clara por la cual transiten básica y necesariamente los aprendizajes de Matemática de los estudiantes son algunas de las causas de la situación actual de los bajos niveles de logro en el área. La escuela debe asegurar el desarrollo de capacidades básicas de los niños del II y III ciclo de la EBR, focalizadas en las siguientes: - C apacidades para la comprensión del sentido numérico, evidenciadas en la comprensión y manejo de la estructura del sistema numeración decimal, operaciones y relaciones numéricas, en la formulación de proposiciones y en el desarrollo de estrategias para la resolución de situaciones problemáticas. - C apacidades para la orientación en el espacio y la medida, evidenciadas en el adecuado manejo espacial, identificación, interpretación y representación gráfica de figuras y objetos. - C apacidades para la organización de la información, evidenciadas en la adecuada organización e interpretación de datos estadísticos presentados en tablas y gráficas. El presente documento está dirigido al docente, como recurso de apoyo al desarrollo de los procesos pedagógicos del área, puesto que contiene los aprendizajes prioritarios concretados en capacidades a desarrollar, con sus respectivos indicadores, y en estrategias metodológicas y de evaluación de los aprendizajes. Este fascículo es parte de una colección en el área de matemática y se denomina “Número y Operaciones”; luego se irán desarrollando los demás organizadores del área. En esta primera entrega se atenderá el organizador referido a Número y Operaciones. El presente fascículo consta de las siguientes secciones: 1. Introducción 2. ¿Qué entendemos por aprender matemática? 3. ¿Qué deben aprender nuestros niños con respecto a los números y a las operaciones? ¿Cómo podemos facilitar estos aprendizajes? 4. Y, ahora, ¿cómo evaluamos lo que aprenden nuestros niños? La manera como los docentes entendemos la Matemática y como pensamos que nuestros estudiantes aprenderán mejor influyen, decididamente, en nuestra práctica pedagógica. De este modo, lo que sabemos respecto de las teorías de aprendizaje y del desarrollo cognitivo se verá influenciado por las ideas que tenemos sobre la Matemática y su aprendizaje. ¿Qué entendemos por Matemática y su aprendizaje? A continuación, presentamos dos casos que ilustran las ideas que los docentes tenemos del aprendizaje de la matemática. Reflexionemos sobre el trabajo que proponen las docentes Josefina y Alicia a sus niños de segundo grado. Caso 1: La docente Josefina propone la siguiente actividad a sus niños de segundo grado para trabajar las nociones de doble y triple: ¿Cómo considera la docente Josefina que se debe aprender Matemática? ¿La actividad propuesta por la docente Josefina facilitará a sus niños construir la noción de doble y triple? ¿Por qué? ¿Qué características crees que tiene el aprendizaje en actividades de este tipo? Mis alumnos ya están multiplicando por 2 y por 3. Ahora, ellos están escribiendo esas tablas en sus cuadernos y, de tarea, les dejaré 20 multiplicaciones. 1 x 1 = 1 1 x 2 = 2 1 x 3 = 3 1 x 4 = 4 1 x 5 = 5 1 x 6 = 6 1 x 7 = 7 1 x 8 = 8 1 x 9 = 9 1 x 10 = 10 1 x 11 = 11 1 x 12 = 12 2 x 1 = 1 2 x 2 = 4 2 x 3 = 6 2 x 4 = 8 2 x 5 = 10 2 x 6 = 12 2 x 7 = 14 2 x 8 = 16 2 x 9 = 18 2 x 10 = 20 2 x 11 = 22 2 x 12 = 24 3 x 1 = 1 3 x 2 = 6 3 x 3 = 9 3 x 4 = 12 3 x 5 = 15 3 x 6 = 18 3 x 7 = 21 3 x 8 = 24 3 x 9 = 27 3 x 10 = 30 3 x 11 = 33 3 x 12 = 36 Niños, les presento la tabla de multiplicar del 1, del 2 y del 3. Cópienlas en su cuaderno. En este caso L a docente Josefina ha planteado una actividad que refleja una visión repetitiva y memorística de la enseñanza-aprendizaje de la Matemática; preocupada más en desarrollar contenidos. E sta visión de la Matemática conlleva a concebirla como un conjunto de reglas y de procedimientos a seguir. Desde esta concepción, la preocupación del docente se centra en lograr que los niños repitan los procedimientos enseñados. E l rol de los niños se reduce a escuchar, a copiar información y a responder preguntas que requieren solo del uso de la memoria y que no favorecen el desarrollo de capacidades, pues no se propicia la problematización, la reflexión ni la discusión. D esde esta concepción, en el mejor de los casos, los niños aprenderán algoritmos sin saber cuándo es pertinente usarlos, y las situaciones planteadas se convertirán en la aplicación de las operaciones enseñadas; esto generará aprendizajes mecánicos, repetitivos y de corta duración, evidenciándose ello en las actitudes negativas de los niños hacia las Matemáticas. Caso 2: La docente Alicia también trabaja con estudiantes de segundo grado y propone la siguiente actividad para trabajar la noción de doble: Chicos, tenemos que terminar de hacer los pantalones. En cada pierna del pantalón, se debe colocar 3 botones de adorno. ¿Cuántos botones necesitamos para cada pantalón? A ver, Miguelito. ¿Cuántos botones necesitarás por cada pantalón? ¡Qué lindo; lo hicieron muy bien!... Mili, ¿cómo lo hizo tu grupo? Si en cada pierna del pantalón necesito 3 botones, hum… 3 y 3 son 6… ¡Ah! Entonces, necesito 6 botones. Y ¿de dónde sacaremos los botones? Contamos 2 veces 3. En nuestro sector de Matemática, hay una caja con los botones que les pedí. ¿Recuerdan? ¿Cómo considera la docente Alicia q ue se debe aprender Mate mática? La actividad propuesta por la docente Alicia, ¿facilitará a sus niños construir la noción de doble? ¿Por qué? ¿Qué características crees que tiene el aprendizaje en actividades de este tipo? En este caso La actividad propuesta por la docente Alicia se desarrolla en un contexto que posibilitará la construcción de la noción del doble de un número. Refleja un enfoque que busca desarrollar las capacidades de sus niños en lugar de abordar un contenido. Este enfoque concibe a la Matemática como un medio para desarrollar un conjunto de habilidades del pensamiento que puedan independizarse del contenido con el que fueron aprendidas y permitan al niño enfrentar situaciones problemáticas diversas, con variadas estrategias de resolución. Los niños son los protagonistas de las actividades de aprendizaje. El docente se preocupa de problematizarlos constantemente, posibilitando que logren sus competencias matemáticas. Los docentes programan sus actividades, con recursos del contexto, teniendo en cuenta, en primera instancia, las capacidades que se requieren desarrollar y los conocimientos correspondientes. ¿Por qué es importante aprender Matemática en la escuela? En la escuela, a través de la Matemática, se busca desarrollar en el niño capacidades, habilidades, conocimientos y actitudes que lo preparen para los retos de la ciencia, de la tecnología y del contexto sociocultural del lugar en el que se desempeñe. Para ello, el docente debe favorecer la construcción del saber matemático del niño a partir de situaciones reales que le permitan comprender el significado y la utilidad de la Matemática. En este fascículo se hace énfasis en la construcción del significado del número, operaciones, y las relaciones que se establecen entre estos, de acuerdo con los procesos de pensamiento lógico del niño, utilizando estrategias en situaciones vivenciales, concretas, gráficas y simbólicas como base fundamental del enfoque del área.

Archivo

Mostrar más
Related Posts Plugin for WordPress, Blogger...